
Django Improved Permissions
Documentation

Gabriel de Biasi

May 04, 2018





Contents:

1 Setup 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Quick Start 5
2.1 Creating your first Role class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Using the first shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Role Class 7
3.1 Required attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Optional Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Role Classes using ALL_MODELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Public Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Shortcuts 13
4.1 Checkers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Assigning and Revoking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Getters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Mixins 15
5.1 RoleMixin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 UserRoleMixin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 PermissionMixin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Permissions Inheritance 17
6.1 Class RoleOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 Working with the inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Unique roles to a given object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 API Reference 21

8 Help 23
8.1 Need further help? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.2 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
8.3 Commercial Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Indices and tables 25

i



ii



Django Improved Permissions Documentation

Django Improved Permissions (DIP) is a django application made to make django’s default permission system more
robust. Here are some highlights:

• Object-level Permissions

• Role Assignment

• Permissions Inheritance

• Cache

• Customizable Permissions per User Instance

Contents: 1

https://coveralls.io/github/s-sys/django-improved-permissions?branch=master
https://travis-ci.org/s-sys/django-improved-permissions
https://badge.fury.io/py/django-improved-permissions


Django Improved Permissions Documentation

2 Contents:



CHAPTER 1

Setup

1.1 Installation

We are in PyPI. Just use the following command within your development environment:

pip install django-improved-permissions

1.2 Configuration

We use some apps that are already present in Django: auth and contenttypes. Probably they are already declared,
but just make sure so we don’t have any issues later.

# settings.py

INSTALLED_APPS = (
...
'django.contrib.auth',
'django.contrib.contenttypes',
...
)

Now, you need to add our app inside your Django project. To do this, add improved_permissions into your
INSTALLED_APPS:

# settings.py

INSTALLED_APPS = (
...
'improved_permissions',
...
)

3



Django Improved Permissions Documentation

Note: We are almost there! We use some tables in the database to store the permissions, so you must run ./manage.
py migrate improved_permissions in order to migrate all models needed.

Yeah, all set to start! Let’s go to the next page to get a quick view of how everything works.

4 Chapter 1. Setup



CHAPTER 2

Quick Start

The entire DIP permissions system works based on roles. In other words, if you want to have permissions between a
user and a certain object, you need to define a role for this relationship.

2.1 Creating your first Role class

First, supose that you have the following model in your models.py:

# myapp/models.py

from django.db import models

class Book(models.Model):
title = models.CharField(max_length=256)
content = models.TextField(max_length=1000)

class Meta:
permissions = (

('read_book', 'Can Read Book'),
('review_book', 'Can Review Book')

)

Note: Notice that the permission statements inside models is exactly like the Django auth system.

Now, create a new file inside of any app of your project named roles.py and implement as follows:

# myapp/roles.py

from improved_permissions.roles import Role
from myapp.models import Book

(continues on next page)

5



Django Improved Permissions Documentation

(continued from previous page)

class Author(Role):
verbose_name = "Author"
models = [Book]
deny = ['myapp.review_book']

class Reviewer(Role):
verbose_name = "Reviewer"
models = [Book]
allow = ['myapp.review_book']

Ready! You can now use the DIP functions to assign, remove, and check permissions.

Every time your project starts, we use an autodiscover in order to validate and register your Role classes auto-
matically. So, don’t worry about to do anything else.

2.2 Using the first shortcuts

Once you implement the role classes, you are ready to use our shortcuts. For example, let’s create a Book object and
an Author role for a user:

from django.contrib.auth.models import User
from improved_permissions.shortcuts import assign_role, has_permission, has_role

from myapp.models import Book
from myapp.roles import Author, Reviewer

john = User.objects.get(pk=1)
book = Book.objects.create(title='Nice Book', content='Such content.')

has_role(john, Author, book)
>>> False
has_permission(john, 'myapp.read_book', book)
>>> False

assign_role(john, Author, book)

has_role(john, Author, book)
>>> True
has_permission(john, 'myapp.read_book', book)
>>> True
has_permission(john, 'myapp.review_book', book)
>>> False

You just met the shortcuts assign_role, has_role and has_permission. If you don’t get how they work,
no problem. First, let’s understand all about implementing Role classes in the next section.

6 Chapter 2. Quick Start



CHAPTER 3

Role Class

Role classes must be implemented by inheriting the Role class present in improved_permissions.roles.

Whenever you start your project, they are automatically validated and can already be used. If something is wrong,
RoleManager will raise an exception with a message explaining the cause of the error.

Note: Only Role classes inside modules called roles.py are automatically validated. See here to change this
behavior.

3.1 Required attributes

The Role class has some attributes that are required to be properly registered by our RoleManager. The description
of these attributes is in the following table:

Attribute Type Description
verbose_namestr Used to print some information about the role.
models list or

ALL_MODELS
Defines which models this role can be attached.

allow or
deny

list Defines which permissions should be allowed or denied. You must define
only one of them.

3.2 Optional Attributes

The Role class also has other attributes, which are considered as optional. When they are not declared, we assign
default values for these arguments.

7



Django Improved Permissions Documentation

Attribute Type De-
fault

Description

unique bool False Only one User instance is allowed to be attached to a given object
using this role.

ranking int 0 Used in order to solve permissions conflit. More about this in the
examples.

inherit bool False Allows this role to inherit permissions from its child models. Read
about this feature here.

inherit_allow or
inherit_deny

list [] Specifies which inherit permissions should be allowed or denied.
You must define only one of them.

3.2.1 Unique Roles

You will probably arrive in a case where an object can only have one User instance assigned to a particular role. But,
it is as easy as learning python to do this using DIP. For example:

class CarOwner(Role):
verbose_name = 'Owner of a Car'
models = [Car]
deny = []

Now, let’s test this on the terminal:

my_car = Car.objects.create(name='My New Car')

# Giving a new car to john!
john = User.objects.get(pk=1)
assign_role(john, CarOwner, my_car)

# That's right.
has_role(john, CarOwner, my_car)
>>> True

# Oh, no...
bob = User.objects.get(pk=2)
assign_role(bob, CarOwner, my_car)

# And now?
has_role(bob, CarOwner, my_car)
>>> True # Noooooo :(

To fix this, let’s change the implementation of the role class and add the unique attribute.

class CarOwner(Role):
verbose_name = 'Owner of a Car'
models = [Car]
deny = []
unique = True

Let’s test this again:

my_car = Car.objects.create(name='My New Car')

# Giving a new car to john!

(continues on next page)

8 Chapter 3. Role Class



Django Improved Permissions Documentation

(continued from previous page)

john = User.objects.get(pk=1)
assign_role(john, CarOwner, my_car)

# That's right.
has_role(john, CarOwner, my_car)
>>> True

# And now we are protected :D
bob = User.objects.get(pk=2)
assign_role(bob, CarOwner, my_car)
>>> InvalidRoleAssignment: 'The object "Car" already has a "CarOwner" attached and it
→˓is marked as unique.'

3.2.2 Role Ranking

There are several cases that can lead your project to have permissions conflicts. We have a basic scenario to show you
how this happens and how you can use role ranking to solve it. For example:

class Teacher(Role):
verbose_name = 'Teacher'
models = [User]
deny = ['user.update_user']

class Advisor(Role):
verbose_name = 'Advisor'
models = [User]
deny = []

Note that these roles have conflicting permissions if both are assigned to the same User instance. To solve this conflict
problem, you can assign an integer value to ranking, present in the Role class. This value will be used to sort the
permissions to be used by the DIP.

In other words, the lower the ranking value, more important this role is. So, let’s work using ranking now:

class Teacher(Role):
verbose_name = 'Teacher'
models = [User]
deny = ['user.update_user']
ranking = 1

class Advisor(Role):
verbose_name = 'Teacher'
models = [User]
deny = []
ranking = 0

Now let’s test this on the terminal:

john = User.objects.get(pk=1)
bob = User.objects.get(pk=2)

assign_role(john, Advisor, bob)
assign_role(john, Teacher, bob)

# Now has_permission returns True using

(continues on next page)

3.2. Optional Attributes 9



Django Improved Permissions Documentation

(continued from previous page)

# the role "Advisor" by Role Ranking.
has_permission(john, 'user.update_user', bob)
>>> True

3.3 Role Classes using ALL_MODELS

If you need a role that manages any model of your project, you can define the models attribute using ALL_MODELS.
These classes are inherit=True by default because they don’t have their own permissions, only inherited permis-
sions. For example:

# myapp/roles.py

from improved_permissions.roles import ALL_MODELS, Role

class SuperUser(Role):
verbose_name = 'Super Man Role'
models = ALL_MODELS
deny = []
inherit_deny = []

Because this class is not attached to a specific model, you can use the shortcuts without defining objects. For example:

from myapp.models import Book
from myapp.roles import SuperUser

john = User.objects.get(pk=1)
book = Book.objects.create(title='Nice Book', content='Such content.')

# You shouldn't pass an object during assignment.
assign_role(john, SuperUser)

# This line will raise an InvalidRoleAssignment exception
assign_role(john, SuperUser, book)

# You can check with and without an object.
has_permission(john, 'myapp.read_book')
>>> True
has_permission(john, 'myapp.read_book', book)
>>> True

3.4 Public Methods

The role classes have some class methods that you can call if you need them.

get_verbose_name(): str

Returns the verbose_name attribute. Example:

from myapp.roles import Author, Reviewer

Author.get_verbose_name()
>>> 'Author'

(continues on next page)

10 Chapter 3. Role Class



Django Improved Permissions Documentation

(continued from previous page)

Reviewer.get_verbose_name()
>>> 'Reviewer'

is_my_model(model): bool

Checks if the role can be attached to the argument model. The argument can be either the model class or an instance.
Example:

from myapp.models import Book
from myapp.roles import Author

Author.is_my_model('some data')
>>> False
Author.is_my_model(Book)
>>> True
my_book = Book.objects.create(title='Nice Book', content='Nice content.')
Author.is_my_model(my_book)
>>> True

get_models(): list

Returns a list of all model classes which this role can be attached. If the models attribute was defined using
ALL_MODELS, this method will return a list of all valid models of the project. For example:

from myapp.models import Book
from myapp.roles import Author, SuperUser

Author.get_models()
>>> [Book]
SuperUser.get_models()
>>> [Book, User, Permission, ContentType, ...] # all models known by Django

In the next section, we describe all existing shortcuts in this app.

3.4. Public Methods 11



Django Improved Permissions Documentation

12 Chapter 3. Role Class



CHAPTER 4

Shortcuts

These functions are the heart of this app. Everything you need to do in your project is implemented in the shortcuts
module.

Note: Do not rush your project using the shortcuts directly. We have an easiest way to use these shorcuts using
mixins in your models. Click here to check it out.

4.1 Checkers

has_role(user, role_class, obj=None)

Returns True if the user has the role to the object.

has_permission(user, permission, obj=None)

Returns True if the user has the permission.

4.2 Assigning and Revoking

assign_role(user, role_class, obj=None)

Assign the role to the user.

assign_roles(users_list, role_class, obj=None)

Assign the role to all users in the list.

remove_role(user, role_class, obj=None)

Remove the role and your permissions of the object from the user.

remove_roles(users_list=None, role_class, obj=None)

13



Django Improved Permissions Documentation

Remove the role and your permissions of the object from all users in the list.

4.3 Getters

get_role(user, obj=None)

Get the unique role class of the user related to the object.

get_roles(user, obj=None)

Get all role classes of the user related to the object.

get_user(role_class=None, obj=None)

Get the unique user instance according to the object.

get_user(role_class=None, obj=None)

Get the unique user instance according to the object.

get_users(role_class=None, obj=None)

Get all users instances according to the object.

get_objects(user, role_class=None, model=None)

Get all objects related to the user.

14 Chapter 4. Shortcuts



CHAPTER 5

Mixins

We’ve implemented three mixins to make it easier to use the shortcuts in your project. All mixins are located in
improved_permisions.mixins.

5.1 RoleMixin

Mixin for objects.

5.2 UserRoleMixin

Mixin for users.

5.3 PermissionMixin

Mixin for views.

15



Django Improved Permissions Documentation

16 Chapter 5. Mixins



CHAPTER 6

Permissions Inheritance

The DIP allows you to implement inheritance permissions for your objects. For example, a librarian does’t need to
have explicit permissions to all their books in his library as long as the books make it clear that the library is an object
in which it “belongs” to.

6.1 Class RoleOptions

The class RoleOptions works just like the Meta class in the Django models, helping us to define some attributes
related to that specific model. This class has the following attributes:

Attribute Type Description
permission_parentslist of

str
List of ForeignKey or GenericForeignKey fields on the model to be
considered as parent of the model.

unique_togetherbool If True, this model only allows one assignment to any User instance.

6.2 Working with the inheritance

Let’s go back to that first example, the model Book. We are going to implement another model named Library and
create a ForeignKey field in Book to create a relationship between them. So, our models.py will be something
like that:

# myapp/models.py

from django.db import models

class Library(models.Model):
name = models.CharField(max_length=256)

(continues on next page)

17



Django Improved Permissions Documentation

(continued from previous page)

class Book(models.Model):
title = models.CharField(max_length=256)
content = models.TextField(max_length=1000)
my_library = models.ForeignKey(Library)

class Meta:
permissions = (

('read_book', 'Can Read Book'),
('review_book', 'Can Review Book')

)

We need to say to DIP that the my_library represents a parent of the Book model. In other words, any roles related
to the Library model with inherit=True will be elected to search for more permissions.

The way to do this is implementing another inner class in the model, the class RoleOptions and defining the list
permission_parents:

# myapp/models.py

from django.db import models
from improved_permissions.mixins import RoleMixin

class Library(models.Model, RoleMixin):
name = models.CharField(max_length=256)

class Book(models.Model, RoleMixin):
title = models.CharField(max_length=256)
content = models.TextField(max_length=1000)
my_library = models.ForeignKey(Library)

class Meta:
permissions = (

('read_book', 'Can Read Book'),
('review_book', 'Can Review Book')

)

class RoleOptions:
permission_parents = ['my_library']

Let’s create a new role in order to represent the Library instances.

# myapp/roles.py

from improved_permissions.roles import Role
from myapp.models import Library

class LibraryManager(Role):
verbose_name = 'Library Manager'
models = [Library]
allow = []
inherit = True
inherit_allow = ['myapp.read_book']

After that, the field my_library already represents a parent model of the Book. Now, let’s go to the terminal to
make some tests:

18 Chapter 6. Permissions Inheritance



Django Improved Permissions Documentation

# Django Shell

from django.contrib.auth.models import User
from improved_permissions.shortcuts import assign_role, has_permission
from myapp.models import Book, Library
from myapp.roles import LibraryManager

john = User.objects.get(pk=1)

library = Library.objects.create(name='Important Library')
book = Book.objects.create(title='New Book', content='Much content', my_
→˓library=library)

# John has nothing :(
has_permission(john, 'myapp.read_book', book)
>>> False

# John receives an role attached to "library".
assign_role(john, LibraryManager, library)

# Now, we got True by permission inheritance.
has_permission(john, 'myapp.read_book', book)
>>> True

6.3 Unique roles to a given object

There is a scenario where a model has several roles related to it, but a single user must be assigned to only one of them.
In order to allow this behavior, we have the boolean attribute called unique_together.

Let’s say that one user must not be the Author and the Reviewer of a given Book instance at same time. Let’s see
on the terminal:

# Django Shell

from django.contrib.auth.models import User
from improved_permissions.shortcuts import assign_role, has_permission
from myapp.models import Book
from myapp.roles import Author, Reviewer

john = User.objects.get(pk=1)
book = Book.objects.create(title='New Book', content='Much content', my_
→˓library=library)

# John is the Author.
assign_role(john, Author, book)

# And also the Reviewer.
assign_role(john, Reviewer, book)

# We cannot allow that :(
has_permission(john, 'myapp.read_book', book)
>>> True
has_permission(john, 'myapp.review_book', book)
>>> True

Now, let’s change the class RoleOptions inside of Book:

6.3. Unique roles to a given object 19



Django Improved Permissions Documentation

# myapp/models.py

from django.db import models
from improved_permissions.mixins import RoleMixin

class Book(models.Model, RoleMixin):
title = models.CharField(max_length=256)
content = models.TextField(max_length=1000)
my_library = models.ForeignKey(Library)

class Meta:
permissions = (

('read_book', 'Can Read Book'),
('review_book', 'Can Review Book')

)

class RoleOptions:
permission_parents = ['my_library']

# new feature here!
# --------------------
unique_together = True
# --------------------

Going back to the terminal to see the result:

# Django Shell

from django.contrib.auth.models import User
from improved_permissions.shortcuts import assign_role, has_permission
from myapp.models import Book
from myapp.roles import Author, Reviewer

john = User.objects.get(pk=1)
book = Book.objects.create(title='New Book', content='Much content', my_
→˓library=library)

# John is the Author.
assign_role(john, Author, book)

# Can be the Reviewer now?
assign_role(john, Reviewer, book)
>>> InvalidRoleAssignment: 'The user "john" already has a role attached to the object
→˓"book".'

Yeah! Now we are safe.

20 Chapter 6. Permissions Inheritance



CHAPTER 7

API Reference

TODO

21



Django Improved Permissions Documentation

22 Chapter 7. API Reference



CHAPTER 8

Help

So do I.

8.1 Need further help?

oi.

8.2 Contributing

Feel free to create new issues if you have suggestions or find some bugs.

8.3 Commercial Support

This project is used in products of SSYS clients.

We are always looking for exciting work, so if you need any commercial support, feel free to get in touch: con-
tato@ssys.com.br

23

mailto:contato@ssys.com.br
mailto:contato@ssys.com.br


Django Improved Permissions Documentation

24 Chapter 8. Help



CHAPTER 9

Indices and tables

• genindex

• modindex

• search

25



Django Improved Permissions Documentation

26 Chapter 9. Indices and tables



Index

A
assign_role() (built-in function), 13
assign_roles() (built-in function), 13

G
get_objects() (built-in function), 14
get_role() (built-in function), 14
get_roles() (built-in function), 14
get_user() (built-in function), 14
get_users() (built-in function), 14

H
has_permission() (built-in function), 13
has_role() (built-in function), 13

R
remove_role() (built-in function), 13
remove_roles() (built-in function), 13

27


	Setup
	Installation
	Configuration

	Quick Start
	Creating your first Role class
	Using the first shortcuts

	Role Class
	Required attributes
	Optional Attributes
	Role Classes using ALL_MODELS
	Public Methods

	Shortcuts
	Checkers
	Assigning and Revoking
	Getters

	Mixins
	RoleMixin
	UserRoleMixin
	PermissionMixin

	Permissions Inheritance
	Class RoleOptions
	Working with the inheritance
	Unique roles to a given object

	API Reference
	Help
	Need further help?
	Contributing
	Commercial Support

	Indices and tables

